

OPINIA GEOTECHNICZNA

dla budowy skateparku, pumptracka, toru łuczniczego wraz z infrastrukturą towarzyszącą - Brzoza Północ na dz. nr 465/2 we wsi Brzoza gm. Nowa Wieś Wielka

Opracował:

•••••

mgr Krzysztof Gul upr. geol. MOŚZNiL VII-1144

Bydgoszcz marzec 2023 r

SPIS TREŚCI

1. DANE OGÓLNE

2. WARUNKI GRUNTOWO - WODNE

3. WNIOSKI I ZALECENIA

SPIS ZAŁĄCZNIKÓW GRAFICZNYCH

Zał. nr 1 Mapa dokumentacyjna w skali 1 : 1000

Zał. nr 2 Objaśnienia znaków i symboli użytych na przekrojach

Zał. nr 3 Legenda do przekrojów z tabelą parametrów geotechnicznych

Zał. Nr 4 Karta dokumentacyjna otworów wiertniczych

I.DANE OGÓLNE

1.Tytuł tematu: Opinia geotechniczna dla budowy skateparku, pumptracka, toru łuczniczego wraz z infrastrukturą towarzyszącą - Brzoza Północ na dz. nr 465/2 we wsi Brzoza gm. Nowa Wieś Wielka

2. Cel opracowania:

Celem przeprowadzonych badań jest rozpoznanie i udokumentowanie warunków gruntowowodnych dla projektowanej inwestycji, a w szczególności:

- rozpoznanie przestrzennego układu warstw geologicznych podłoża gruntowego
- wydzielenie warstw geotechnicznych
- określenie parametrów fizyczno-wytrzymałościowych wydzielonych warstw
- określenie głębokości zalegania wody gruntowej
- ocena przydatności terenu dla realizacji projektowanej inwestycji

3. Charakterystyka projektowanej inwestycji

Projektuje się budowę skateparku, pumptracka oraz toru łuczniczego wraz z infrastrukturą towarzyszącą w postaci ścieżek dojścia i budowy miejsc parkingowych z płyt ażurowych. Zakres planowanych prac nie przewiduje wykonywania głębokich wykopów, obejmuje on montaż lekkich powierzchniowych urządzeń ewentualnie płytko fundamentowanych.

4. Charakterystyka środowiska geograficznego

4.1 Topografia i zagospodarowanie terenu

Dokumentowany teren położony jest w na dz. nr 465/2 przy ul. Kanarkowej w północnej części wsi Brzoza w gm. Nowa Wieś Wielka. Aktualnie jest to obszary niezabudowany w północnej części splantowany, a w południowej porośnięty trawą, w jego obrębie brak jest zinwentaryzowanego uzbrojenia podziemnego. W północnej części stał rozebrany obecnie budynek.

W bezpośrednim sąsiedztwie terenu badań posadowione są nowe domy jednorodzinne. Znajdują się one w dobrym stanie technicznym i nie wykazują usterek wynikających z przesłanek geologicznych.

4.2 Geomorfologia

W ujęciu geomorfologicznym analizowany obszar położony jest na tarasie erozyjno – akumulacyjnej rzeki Noteć w południowej części mezoregionu Kotlina Toruńska.

4.3 Hipsometria

Powierzchnia terenu w obszarze badań jest płaska, lekko nachylona w kierunku południowym, rzędne terenu w obszarze planowanych inwestycji w miejscach wykonanych badań mieszczą się w przedziale 68,76 – 69,26 m n.p.m., deniwelacje w obrębie badanego terenu wynoszą maks. ok. 0,5 m.

5. Zakres i metodyka wykonanych prac

5.1 Prace terenowe

 współrzędne płaskie punktów badawczych wytyczono metodą ortogonalną z dowiązaniem do istniejących szczegółów terenowych. Współrzędne wysokościowe określono na podstawie niwelacji technicznej wykonanej niwelatorem z dowiązaniem ciągu niwelacyjnego do repera roboczego /pokrywa studzienki kanalizacyjnej/ o rzędnej odczytanej z dostarczonego podkładu geodezyjnego.

- wiercenia:- wykonano 3 otwory geologiczne badawcze w miejscach wskazanych przez zleceniodawcę do głębokości 2,0 m p.p.t., ręcznie spiralnym SS o średnicy 70 mm.

- sondowania: wykonano badania stopnia zagęszczenia w obrębie gruntów sypkich w 3 punktach lekką sondą udarową DPL z końcówką stożkową w zakresie głębokości 0,4 – 2,0 m. Łącznie przesondowano 4,6 m podłoża.

Prace terenowe przeprowadzono w dniu 07.03.2023 r pod stałym nadzorem geologicznym.

II. WARUNKI GRUNTOWO – WODNE

1. Charakterystyka geologiczno - geotechniczna podłoża

Podłoże badanego terenu jest zbudowane z gruntów rodzimych, mineralnych, sypkich. Podzielono je na warstwy przyjmując, jako podstawę podziału wydzielenia geologiczne różniące się genezą, stratygrafią oraz litologią i ujęto w jednostki geotechniczne zgodnie z PN-EN 1997-1 i PN-EN 1997-2.

W budowie geologicznej dokumentowanego terenu, w strefie przypowierzchniowej do głębokości wykonanych wierceń tzn. 2,0 m, wyróżniono osady czwartorzędowe holocenu i plejstocenu.

Czwartorzęd (Q)

Holocen (Qh)

Gleby (Gb) – to ciągła warstwa piasków drobnych humusowych, zalegająca na powierzchni całego terenu badań do głębokości 0,3 - 0,4 m. Z uwagi na punktowy charakter badań lokalnie możliwe jest głębsze zaleganie spągu warstwy glebowej niż wykazano to w trakcie badań.

Powyższe grunty z uwagi na młody wiek, wysoką ściśliwość, niskie wartości oraz anizotropię parametrów geotechnicznych nie mogą stanowić podłoża budowlanego dla projektowanego obiektu, dlatego też pominięto je w szczegółowej charakterystyce geotechnicznej.

Plejstocen(Qpf) – utwory sypkie akumulacji fluwialnej

Warstwa I - to seria piasków zalegających pod w/w glebami nawiercona na głębokości 0,3 - 0,4 m. Do głębokości wykonanych wierceń tj. do 2,0 m omawianych utworów nie przewiercono. Opisywane piaski zalegają w gruncie w stanie średnio zagęszczonym o wartości stopnia zagęszczenia I_D mieszczącej się w przedziale 0,40 - 0,58 ustalonej na podstawie badań

sondą DPL z końcówką stożkową. Z uwagi na zróżnicowanie ich uziarnienia i zagęszczenia wydzielono w ich obrębie dodatkowo 3 warstwy:

Warstwa Ia - to piaski drobne o wartości normowej stopnia zagęszczenia $I_D^{/n/} = 0,40$;

Warstwa Ib - to piaski drobne o wartości normowej stopnia zagęszczenia $I_D^{/n/} = 0,58$

Warstwa Ib - to piaski średnie przewarstwione piaskami drobnymi o wartości normowej stopnia zagęszczenia $I_D^{/n/} = 0,50$.

Głębokość zalegania w/opisanych warstw i ich układ zilustrowano w karcie dokumentacyjnej otworów wiertniczych /Zał. Nr 4/. Pozostałe parametry geotechniczne zestawiono i zilustrowano w legendzie do przekrojów geologiczno - inżynierskich /Zał. Nr 3/.

2. Warunki wodne

W okresie prowadzenia prac terenowych tj. marzec 2023 r do głębokości 2,0 m p.p.t. stwierdzono występowanie jednego ciągłego poziomu wód gruntowych o zwierciadle, ciągłym, swobodnym, stabilizującym się na głębokości 0,92 – 1,46 m tj. na rzędnych 67,80 – 67,84 m n.p.m.

Stwierdzone w trakcie badań stany wód gruntowych uznaje się za wysokie w grupie stanów średnich w ich rocznym cyklu wahań. W okresie intensywnych długotrwałych opadów lub intensywnych roztopów, maksymalny piezometryczny poziom zwierciadła wód gruntowych może być wyższy o około 0,5m w stosunku do stwierdzonego badaniami. Zwierciadło wody może wystąpić ponad powierzchnię gruntu.

Klasyfikacja i oznaczenie środowiska zewnętrznego oddziałującego na beton. W obrębie gruntów budujących podłoże w analizowanym obszarze stwierdza się: -powyżej zwierciadła wód gruntowych środowisko stałe, nieagresywne, wilgotne -poniżej zwierciadła wód gruntowych środowisko stałe, nieagresywne, mokre

Ocenę agresywności przeprowadzono na podstawie doświadczeń w budownictwie na obszarach o podobnej budowie geologicznej.

III. WNIOSKI I ZALECENIA

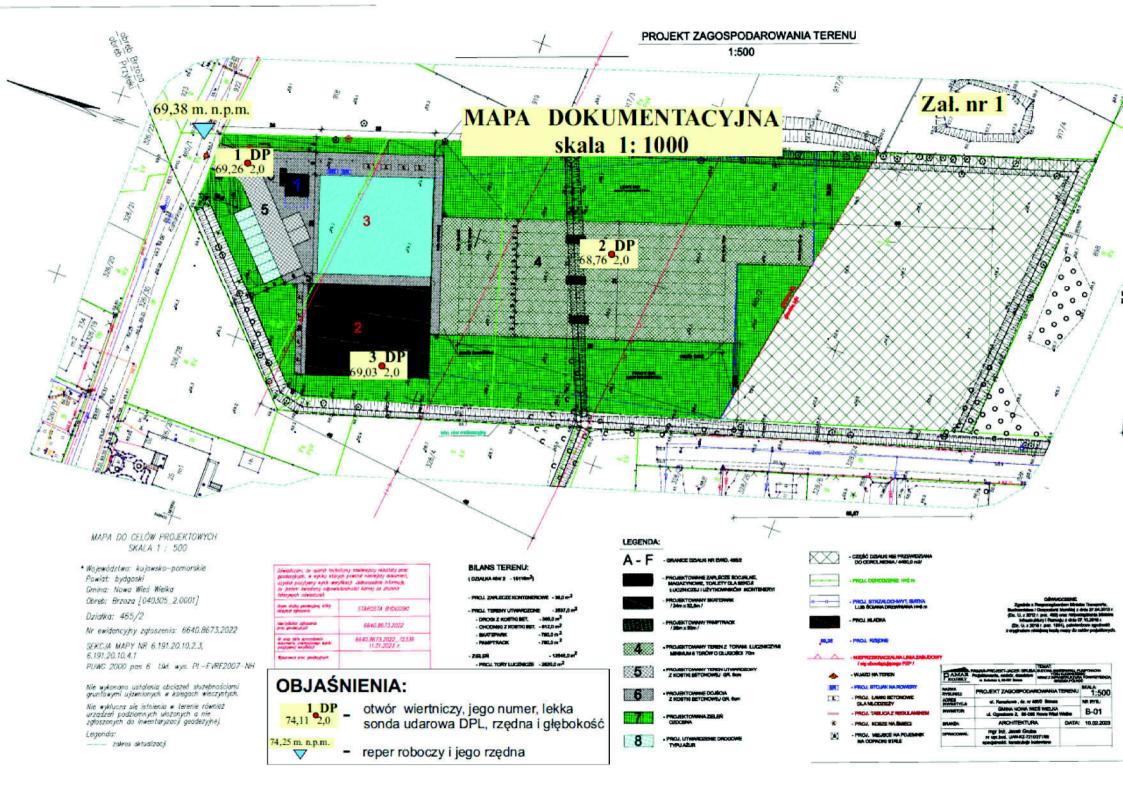
WNIOSKI:

 Na podstawie przeprowadzonych badań stwierdza się, że warunki gruntowo - wodne dla budowy planowanej inwestycji są korzystne z uwagi na:

1.1. - występowanie w przypowierzchniowej strefie podłoża cienkiej warstwy nienośnych gleb, której spąg układa się na głębokości 0,3 – 0,4 m.

1.2. - występowanie poniżej w/w gleb gruntów warstwy I tj. piasków w stanie średnio zagęszczonym, które charakteryzują się wysokimi wartościami parametrów wytrzymałościowych i umożliwiają ewentualne bezpośrednie posadowienie elementów fundamentowanych oraz warstw konstrukcyjnych planowanych nawierzchni utwardzonych.

1.3. - występowanie jednego, ciągłego poziomu wód gruntowych o zwierciadle ciągłym, swobodnym, stabilizującym się na głębokości 0,92 – 1,46 m tj. na rzędnych 67,80 – 67,84 m n.p.m. tj. poniżej poziomu spągu gleb oraz poziomu posadowienia fundamentów elementów projektowanej inwestycji;


1.4. – występowanie środowiska nieagresywnego na beton.

 Stwierdza się występowanie prostych warunków gruntowo – wodnych w badanym podłożu. Obiekt można zaliczyć do I kategorii geotechnicznej.

ZALECENIA:

1. W świetle stwierdzonych warunków gruntowo – wodnych dla wykonania sztywnej nawierzchni utwardzonej skateparku i pumptracku oraz infrastruktury towarzyszącej zaleca się:

- skorytowanie warstwy nienośnych gleb na całych powierzchniach planowanych utwardzonych, sztywnych nawierzchniach do stropu piasków warstwy I.
- przeprowadzić dogęszczenie mechaniczne odsłoniętego stropu piasków i wykonanie na nim projektowanych warstw konstrukcyjnych pod sztywne nawierzchnie.
- w obszarach głębiej zalegających gleb wykonać w ich miejsce zagęszczoną podsypkę piaskową.
- Lekkie obiekty fundamentowane posadowić bezpośrednio w obrębie piasków warstwy I.

OBJASNIENIA SYMBOLI I ZNAKOW UŻYTYCH NA PRZEKROJACH Symbole geotechniczne gruntów wg normy DOTYCZA-ZNAKI DODATKOWE PN-74/8-02480 CE OPISU GRUNTÓW GRUNTY NASYPOWE domieszki 11 pszewarstwienia (wkłodki) NB nasyp budowlany na pograniczu NN nasyp niekontrolowany () w nawiasie określenia uzupełniające dotyczące: składu GRUNTY ORGANICZNE ROnasypu, rodzaju gruntów organicznych, petrografii skoł DZIME numer wiercenia 52.7 rzędna wiercenia 2%< 10m \$5% arunt prochniczny OPRÓBOWANIE WIERCENIA Nm namul 5%< 10m€30% 30%<10m torf probka o naturalnej strukturze (NNS) próbko o naturalnej wilgotności (NW) GRUNTY MINERALNE RODZIpróbka wody gruntowej (WG) ME (NIESKALISTE) κw OZNACZENIE WODY W wietrzelina KWa wietrzelina gliniasta kamienist WIERCENIU rumosz wyinterpretowany max poziam wody gruntowej (pie-NO rumosz gliniasty NU DO zometryczny) otoczaki gruboziar piezometryczny poziom wody (PPW) ustalany w żwir 498 . czosie wiercenio i rzedno 0 żwir gliniasty nist nawiercony poziom wody gruntowej i rzedno pospólka 47.8 Poa grunt newodniony pospolka gliniasta Pr saczenie wody plasek gruby drobnozjar-Ps -1% OZNACZENIE RODZAJU BAplasek średni ste, nie spoiste Pd plasek drobny DAN I SONDOWAN Pπ niste. penetrometr tloczkowy (PP) plasek pylasty . Pa ścinarka obrotowa (TV) plasek gliniasty sonde cylindryczna (SPT) pyl piaszczysty ' Pył sondo ścinająca obratowa (VT) spoiste glina piaszczysta badania presiometrom (P) Ó glino ZW rodzaj sondowania i strefa przebadana sondą: ZW- udorowo-obrolowa glina pylosta SL - lekka wbijana drobnoziarnisle. glino piaszczysta zwiezła SW- weiskana \$Z glina zwiezła SC- ciężka wbijana Smz ST - wkręcana glino pylasta zwięzła !p 11 Plaszczysty OZNACZENIE STANU GRUNTU -----11 ITT n=0.5 - stopien zageszczenia il pylesty 1 = 0.20 - --- piastyczności GRUNTY SKALISTE INNE OZNACZENIA ST skala Iwarda SM skala miękka 11 'nr worstwy geotechnicznej <u>VIII</u> rzut projektowanego obiektu na przekrój z nu-INNE GRUNTY NIETYPOWE merem (nazwa) obiektu i ilościa kondygnacji NIEOBJET NORMA projektowony poziom posadowienia kr podstawowe granice htologiczne-stratygraticzne mlode - csody kredo gу jeziorne Ciac dalszy objośnień potrz gylio сb Legenda do przekrojówwegiel brundiny ck weatel kamienny -zał nr 3 KD - 22 kredo pisząco

LEGENDA LEGENDA EKROJÓOV OPPRZEKROJÓW

		OBJAŚNIENIA			PARAMRET			' A R	y MC		0					EEG		5	I	
GEOLOGICZNE				wartooidositaaraktievystytezpasiydizuha x/n/ wepóitezpyöhitkymatteriatetwyrigion?y ,, m" wartooiidinoisitezentioiwaadmiowa x/r/				grunt wijdg. L - wg lit. grun - bez uwzględnienia grunt ngwodniomy wyporu wody			L - weg biedań laboratoryjnych ^ wartość ustalona-metodap A.uwzgartość wg bedań polowych • wg bada			ustalona brewychłoratwry. fachowejej			,a"-wg badæñ-arohjwalaych L -wg l			
-fil	zno ijezny	Opis litologiczno		kayy sznej	Symbol gruntu	kojoizzaej ej ii grungtu intu	stan gruntu		ność Ina	bowa wa	sson aliaja La tarcia	cia tarcia nego		ətryczny ściśliwości ścis	Moduł śliwości odkształce		na na wcisteristernie PW#TW-1	borna na b na:dolinainia)i SO 21 SO -	c filtriateglacji	initë e lenia
0 م	stratygraficzno litolotototory	-	enetyczno ygraficzny	nr waarkwyy geotechnicznej		wskaźnik gęela konsolidiacjäjig	stopiet/pień zagęszczenia	sto piter foie ń plastyczności	wilgotność naturalna	ପ୍ରକୃଷ୍ଣପ୍ରାର୍କ୍ଷ୍ୟିଂର୍ଟ୍ objętościowa	spójność ^m ni kishezją <i>i</i> a	kajt ktarcia wewnętrznego	plenwotrusj hej	wtórnej	platárolejego	wtórnego wł	ŞQ v Li	spólnaisć pozr wytrzymatość wgiśctisaintenS	współczynnik	ciáitiante pęcznienia
υ	8					₿ B	N 	<u>م</u> . ار ا	Wn Wn %	n q %t/m.*	c, kPal	¢uq oʻm oʻ	M₀o o MPa	<u>М</u> с МР ааМРа	E, MM MPMPa	M E MPa	 MPa	Ec, I kPlaPa	E k m/s	₽ _c kPaM₽
hologen	Qh _{Gb}	utwor glebow	y utwo e ^{współcze-} sn		Gb (PdH)		G	runty	nie	nie g	lająco	e nad	lające	bezp	o śię dn	i ego d	o posa	posat	lez pie	áie d
S							<u>0,40</u> **		<u>16</u> 24	1,75 1,90 0,9 1,57 1,71	1,75	229 4,9		1,90 =				29,9 -		
				IaI	a Pd		$\frac{0,10}{0,9}$		1,1	0,9	0,9	0.9	47,5	58,3	5385,3 4 0		35,4		1044	2
()							0,36		17,6 26,4	1,57 1,71	17,6 1,71	26,9	1,57				26,9			
ب 0 0			utwory				0.59 **		<u>16</u> 24	1,75 1,90	1,75	mu 0 ⁻		1,90 =				30,8 -		
÷ Ø	Qp _f	piashias	akumu- ^{Ski} lacii	Ib	b Pd		0,58 ** 0,9 0,53		1,1	<u> </u>	0,9	<u>3</u> 204,8 0,9	65,4	1,90 81,8	8418,88 0	,961,0	48,8		1061	,0
0		T	fluwial-				0,53		17,6 26,4	0,9 1,57 1,71	17,6 1,71	27,7	1,57				27,7			
Ø.			nej						14 -	1,85	1,85									
				Icl	l₽s//Pc	1	0,50 ** 0,9		<u>22</u> <u>1,1</u>	<u>2,00</u> 0,9	0,9	<u>3232,0</u> 0,9	86 ,876 ,	2,00 ⁼ 796,3	- 7996,13 o	,981,2	73,	33,0 - 1	10 ^{-₄} 8′	1,2
							0,45		15,4 24,2	1,85 <u>2,00</u> <u>0,9</u> <u>1,66</u> <u>1,80</u>	15,4 24,2	29,7	1,66	, , , , , , , , , , , , , , , , , , ,			29,7			
									ℰℲℊℰ	T'20A	24,2		1,80							

						NUBINETAICAS						Zał	. NNI	₄ 4]	
OTWORU WINZREIRNINSIZEZKOGO TEMAT: Opiniia gegteetkoloziozanlla bladotuydskazepsklate, paula ptorukłatoza i o zagowraz z z													Nr otw. 1				
TEM.	AT: Opininia trukturą tov	gegtæd wærvys	bołozicz udła sąąę ą Brz b a	bitedota z Pźałno	yd skæ tej Pó haod z	p sklate,pruta ptrø z. ma r 4 65/2 rwe v	ckaptoruka KrisBrBozoz	oznicizegy gan.gNow	gownaataz zNWieś V	z z Wiedka	rzed Wielka	na	69	9,26	m	h.p.m	
1 I)ozór _: r	ngr	K.Gul			mgr	K. Gul				data 0700pc2023 r						
śr. i rodz. świdra	obserwacje hydrogeologicz	głębokość w(m)	profil litologiczny	przelot warstwy	miąższość w(m)	Rodzaj gruntu i barwa	Geneza i straty- grafia	w-wigotność w-wigotne, nw - nawodnione, s - suche	głębokość pobrania próby	stan gruntu	rodz. pobr. próby gruntu	wyniki badań laboratoryjnych	opór na wcisk penetr PW-1	głęb. i rodz. sondowania	nr warstwy geotechnicznej		
1			2		3		84			95		610)	1	1	1	
Щ.				0,30,3	0,3	PdH	Qh _{gb}							0.5		1	
ss & 700mBBM	↓ 1,46 67,80	 1,0 2.0			1,7	Pd	Qp _f	w		szg. D ^{fr′} =0,5	3			0, <u>5</u> DPL	I	b	
Nr	otw.	2									rzę	dna	68,		n n	.p.m.	
BBm				0,40,4	0,4	PdH	Qh _{gb}							0,4			
\$ 700mBBm	• <u>0,92</u> 67,84	1, <u>0</u>			1,0	Pd	Qp _f	w		szg. ₀ ^{f∾} =0,58	3			DPL	Ι	b	
ŝ		2,0		1,41,	4 0,6	Ps//Pd		nw		szg. _□ f ^{r/} =0,50				2,0		lc	
Nr E	otw.	3				DIT	Oh				rzę	dna	69,	03 r	n n	.p.m.	
700m ՅՅՅ ՠ				0 ,4 0,4	0,4	PdH	Qh _{gb}							0,5 DPL		-	
	v 1,23	1, <u>0</u>		1,21,	0,8 2	Pd	Qp _f	w		szg. "f" =0,5					I	b	
ss S	67,80	2,0		1,71,	0,5	Pd Pd		nw		szg. "f ^{n/} =0,40 szg. "f ^{n/} =0,50)			2,0		a b	